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Two Methods for Assessing Oral Reading Prosody

MINH DUONG, JACK MOSTOW and SUNAYANA SITARAM, Carnegie Mellon University

We compare two types of models to assess the prosody of children’s oral reading. Template models measure
how well the child’s prosodic contour in reading a given sentence correlates in pitch, intensity, pauses, or
word reading times with an adult narration of the same sentence. We evaluate template models directly
against a common rubric used to assess fluency by hand, and indirectly by their ability to predict fluency and
comprehension test scores and gains of 10 children who used Project LISTEN’s Reading Tutor; the template
models outpredict the human assessment.

We also use the same set of adult narrations to train generalized models for mapping text to prosody,
and use them to evaluate children’s prosody. Using only durational features for both types of models, the
generalized models perform better at predicting fluency and comprehension posttest scores of 55 children
ages 7–10, with adjusted R2 of 0.6. Such models could help teachers identify which students are making
adequate progress. The generalized models have the additional advantage of not requiring an adult narration
of every sentence.
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1. INTRODUCTION

Assessment of children’s oral reading is important for multiple reasons: to compare
fluency against expected norms [Hasbrouck and Tindal 2006], provide motivational
feedback on rereading to improve fluency [Kuhn and Stahl 2003], analyze the longitu-
dinal development of fluency [O’Connor et al. 2007], compare the efficacy of different
types of reading practice [Beck and Mostow 2008; Kuhn et al. 2006], study the rela-
tion of fluency to comprehension [Schwanenflugel et al. 2006], and even estimate the
reader’s fluctuating comprehension of a given text [Zhang et al. 2007].
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Table I. Fluency Rubric adapted from Zutell and Rasinski [1991]; Downloaded from www.timrasinski.com/
presentations/multidimensional fluency rubric 4 factors.pdf

Dimension 1 2 3 4
Expression and

Volume
Reads as if just

trying to “get
words out.” Little
sense of trying to
make text sound
like natural
language. Tends
to read in a quiet
voice.

Begins to use voice
to make text
sound like
natural language
in some areas
but not in others.
Focus remains
largely on
pronouncing
words. Still reads
in a quiet voice.

Makes text sound
like natural
language
throughout the
better part of the
passage.
Occasionally
slips into
expressionless
reading. Voice
volume is
generally
appropriate
throughout the
text.

Reads with good
expression and
enthusiasm
throughout the
text. Varies
expression and
volume to match
his or her
interpretation of
the passage.

Phrasing Reads in monotone
with little sense
of phrase
boundaries;
frequently reads
word-by-word

Frequently reads
in two- and
three-word
phrases, giving
the impression of
choppy reading;
improper stress
and intonation
fail to mark ends
of sentences and
clauses

Reads with a
mixture of
run-ons, mid
sentence pauses
for breath, and
some choppiness;
reasonable stress
and intonation.

Generally reads
with good
phrasing, mostly
in clause and
sentence units,
with adequate
attention to
expression.

Smoothness Makes frequent
extended pauses,
hesitations, false
starts,
sound-outs,
repetitions,
and/or multiple
attempts.

Experiences
several “rough
spots” in text
where extended
pauses or
hesitations are
more frequent
and disruptive.

Occasionally
breaks smooth
rhythm because
of difficulties
with specific
words and/or
structures.

Generally reads
smoothly with
some breaks, but
resolves word
and structure
difficulties
quickly, usually
through
self-correction.

Pace Reads slowly and
laboriously.

Reads moderately
slowly.

Reads with an
uneven mixture
of fast and slow
pace.

Consistently reads
at a
conversational
pace;
appropriate rate
throughout
reading.

Oral reading fluency is the ability to “read text with speed, accuracy, and proper
expression” [NRP 2000]. Expressiveness is the ability to read with a prosodic contour
appropriate to the meaning of the text, which reflects an understanding of the text
[Schwanenflugel et al. 2006]. Educators measure oral reading fluency in two ways.
Oral reading rate is the number of words read correctly per minute. This measure is
quick and easy to administer, and correlates strongly with children’s comprehension
test scores [Deno 1985]. However, oral reading rate ignores expressiveness.

Fluency rubrics [Pinnell et al. 1995] score reading more subjectively and qualitatively
against specified criteria. One widely used fluency rubric, shown in Table I, rates
expression, phrasing, smoothness, and pace on separate 4-point scales. For example, the
scale for pace ranges from 1 for slow and laborious to 4 for consistently conversational.

In this article we address the problem of assessing oral reading prosody automati-
cally. Solving this problem would make it possible to assess reading more richly and
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informatively than oral reading rate, and more precisely and consistently than human-
scored rubrics. It could more sensitively detect improvement in oral reading, whether
across successive rereadings of the same practice text, or in the ability to read un-
practiced text fluently. It could serve as the basis for giving children feedback on their
oral reading, telling them how to read more expressively. It might even enable a tu-
tor to gauge a student’s comprehension of a given text unobtrusively [Zhang et al.
2007], without interrupting to insert multiple-choice probes [Mostow et al. 2004] or
ask open-ended questions [Gerosa and Narayanan 2008].

Our data consist of children’s oral reading assisted and recorded by Project LISTEN’s
Reading Tutor, which listens to children read aloud, and helps them learn to read
[Mostow et al. 2003]. The Reading Tutor and the child take turns choosing what
to read from a collection of several hundred stories with recorded adult narrations.
The Reading Tutor displays text incrementally, adding a sentence at a time. It uses the
Sphinx automatic speech recognizer (ASR) [CMU 2008] to listen to the child read the
sentence aloud, tracking the child’s position in the text to detect deviations from it and
identify the start and end points of each word and silence in the recorded oral reading
[Mostow et al. 1994]. It responds with spoken and graphical feedback when the ASR
detects hesitations or miscues, or when the child clicks for help on hard words or
sentences. The spoken feedback uses recorded human speech, including a fluent adult
narration of each sentence, time-aligned against the sentence text by forced alignment.

We present two types of models for assessing children’s oral reading prosody. Both
models score oral reading one sentence at a time. A template model scores the child’s
reading of a sentence by its similarity to the adult narration of the same sentence,
based on whatever prosodic contour the sentence led the narrator to produce. Thus it
may implicitly capture subtle text features to which a human narrator is sensitive.
However, it cannot evaluate unnarrated sentences. A generalized model is trained on
a corpus of adult narrations, and scores the child’s reading against the trained model
instead of assuming that an adult narration is available for that sentence. Moreover,
generalized models are trained on multiple adult voices, so they are not specific to
the idiosyncrasies of any one speaker. To determine whether such generalization is
possible without sacrificing the accuracy of the sentence-specific approach, we compare
the models’ ability to predict students’ fluency and comprehension test scores.

The rest of this article is organized as follows. Section 2 discusses related work.
Section 3 describes template models and Section 4 evaluates them against various
baselines. Sections 5 and 6 respectively describe and evaluate generalized models.
Section 7 concludes by summarizing contributions and proposing future work.

2. RELATION TO PRIOR WORK

Previous work has assessed children’s oral reading at different levels of granularity.
Some work, especially to assess pronunciation by native and nonnative speakers, has
focused on reading individual words, either in isolation [Tepperman et al. 2011] or
in lists [Price et al. 2009]. Other work has focused on reading connected text, using
speech recognition in automated tutors to track the reader’s position and detect miscues
[Beattie 2010; Hagen et al. 2007; Mostow et al. 1994]. Assessment of connected reading
has focused on accuracy of word identification [Banerjee et al. 2003; Black et al. 2007;
Lee et al. 2004]; mastery of grapheme-to-phoneme mappings [Beck and Sison 2006]; and
fluency of oral reading, more specifically, oral reading rate [Balogh et al. 2007] or closely
related variants such as average interword latency [Beck et al. 2004; Mostow and Aist
1997] or word reading time [Beck and Mostow 2008]. Some work [Bernstein et al. 1990;
Tepperman et al. 2007] has assessed (adult) nonnative speakers’ oral language. That
problem is related to oral reading fluency but very different, because it measures the
ability to translate thoughts into language, rather than text into speech.
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Fig. 1. Visualization of a prosodic contour.

Our work differs from previous automated assessments of oral reading fluency in
what and how they estimate. Balogh et al. [2007] used a proprietary system to score
the speed and accuracy of adults’ oral reading. They validated against human judges
counting the number of words read correctly in the same recorded readings. The human
judges correlated strongly (0.96–1.00) with the automated assessment—as strongly as
they did with each other. It is important to note that individuals’ reading rates fluctuate
for many reasons, so their rates on different passages or even the same passage at
different times correlate less than perfectly with each other. Thus predicting posttest
fluency is inherently harder than measuring reading rate on the same recording.

Beck et al. [2004] used various aggregate features of word latencies and help requests
by 87 children in grades 1–4 over a two-month window in Project LISTEN’s Reading
Tutor to predict their fluency test scores. However, they did not predict comprehension
scores or gains.

Zhang et al. [2007] attempted to detect moment-to-moment fluctuations in children’s
comprehension of the text they were reading aloud in the Reading Tutor. They trained
a model to predict performance on multiple-choice comprehension questions inserted
during the reading. Oral reading behavior improved model fit only marginally after
controlling for student identity and question attributes affecting difficulty. Only oral
reading features related to oral reading rate and accuracy achieved significance, but
none of their prosodic features compared prosodic contours to fluent narrations.

3. TEMPLATE MODELS

We now describe how we represent and compare prosodic contours, and the manual
analysis methodology that inspired our approach.

3.1. Representing Prosodic Contours

“Expressiveness” is important but defined imprecisely and judged subjectively. There-
fore we use a more precisely defined construct: prosodic contour. We represent a prosodic
contour of a read sentence as the sequence of values, one for each word in the sentence,
of a prosodic feature such as the word’s latency, duration, mean pitch, or mean inten-
sity. As Figure 1 shows, we can visualize a prosodic contour as a sequence of rectangles,
displaying prosodic features of each read word as graphical features of the rectangle
representing it: duration as width, pitch as vertical position, and intensity as height
and color. Figures 2(a), 2(b), and 2(c) visualize prosodic contours for readings of the
same sentence by an adult narrator, a fluent child, and a disfluent child. The contour
for the disfluent reading reflects its longer duration and frequent pauses.
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Fig. 2. 3 prosodic contours for “They have to put food on the table so that we can eat.”

3.2. Scaling up Manual Analysis of Oral Reading Prosody

The template model approach is inspired by previous analyses of children’s oral
reading prosody, based on the insight that the more expressive a child’s reading
of a text, the more its prosody tends to resemble fluent adult reading of the same
text. Schwanenflugel and her collaborators [Miller and Schwanenflugel 2006; Miller
and Schwanenflugel 2008; Schwanenflugel et al. 2004; Schwanenflugel et al. 2006]
analyzed adults’ and children’ readings of the same short text. They painstakingly
hand-aligned the text to a spectrogram of each reading to compute the duration
of pauses between sentences, at commas after phrases, and in midphrase, called
“pausal intrusions”; the number of pausal intrusions; the drop in F0 (pitch) at the
ends of sentences; and the intonation contours of the first three sentences, which they
computed by measuring F0 at the vocalic nucleus of each word. Averaging these values
across 34 adults yielded a profile of expressive reading. Correlating this profile against
the corresponding prosodic profile of each child quantified the expressiveness of the
child’s oral reading, and its changes from the end of grade 1 to the end of grade 2, so
as to relate them to scores and gains on reading tests administered at those points. F0
match (correlation to adult intonational contour) and the number of pausal intrusions
were the best indicators of prosodic change between first and second grades.

Our goal was to analyze the prosody of children’s assisted oral reading in Project
LISTEN’s Reading Tutor. Our data came from the 2005–2006 version of the Reading
Tutor. To automate our analysis we adapted Schwanenflugel et al.’s approach, with
several key differences in data, methods, and features.
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Table II. Word-Level Features Used by Template Model

Raw reading time Normalized reading time
Raw latency Normalized latency
Raw production Normalized production

—We used the Reading Tutor’s single adult narration of each sentence, rather than
multiple adult readings of it. Although a sentence can be read fluently in more
than one way, Schwanenflugel (personal email communication, 10/18/2008) found
“extremely high correlation among adults in our sample, even across regions.”

—We used children’s oral reading recorded over a whole semester of using the Reading
Tutor, rather than briefly by researchers for an experiment.

—We administered tests at start and end of semester, rather than a year apart.
—We computed prosodic contours on thousands of sentences, not just a few.
—We used whatever a child happened to read, rather than a single common text.

We replaced manual methods with automated ones.
—We used the Reading Tutor’s ASR-based time-alignments of text to oral reading,

rather than identifying each word’s start and end time by hand.
—We estimated F0 using Praat [Boersma and Weenink 2008] and averaged F0 over the

time interval occupied by each word, rather than hand-measuring F0 at the word’s
manually located vocalic nucleus in a spectrogram.

—We computed pitch variability as standard deviation of F0 rather than as difference
between high and low F0 values, because standard deviation is more robust to outliers
than range is.

We used a somewhat different set of word-level features, listed in Table II.
—We computed contours for word latency, duration, and intensity, not just pitch.
—We computed production time to say each word, not just the latency preceding each

word, and total reading time for each word as latency plus production time.
—We computed latency, production, and reading time not only as absolute durations,

but also normalized by word length as time per letter.
—We computed the latency preceding every word of each sentence except the first word,

not just at phrase-final commas and in mid-phrase intrusions.
—We did not compute the latency of pauses between sentences, because the Reading

Tutor displayed text incrementally, adding one sentence at a time; consequently
inter-sentential pauses included time waiting for the Reading Tutor to give feedback
(if any) and then display the next sentence.

3.3. Comparing Prosodic Contours

To quantify the similarity of the child’s oral reading to an adult narration of the same
sentence, we adopted Schwanenflugel et al.’s metric: simply compute the correlation be-
tween the two contours. We get separate similarity scores for each prosodic feature. For
example, the intensity contours in Figure 2(a) (adult) and 2(b) (fluent child) correlate
at 0.77. In contrast, the intensity contours in Figures 2(a) (adult) and 2(c) (disfluent
child) correlate at only 0.02.

Representing child and adult contours as sequences of word-level values lets us
compare them despite differences between their time alignments. Moreover, using
correlations to score the similarity of child and adult contours is an elegant way to
normalize them: it serves to factor out differences between children and adults in
baseline F0 (adults’ lower pitch), individual variations in intensity, and fluctuations in
recording conditions from one sentence to another. An alternative way to normalize
pitch and intensity values would use their deviations from baseline values computed
by averaging over the utterance or recent utterances.
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Table III. Sentence-Level Features Used by Template Models

1 Correlation of pitch contour to adult narration
2 Correlation of intensity contour to adult narration
3 Correlation of raw reading time to adult narration
4 Correlation of raw production to adult narration
5 Correlation of raw latency to adult narration
6 Correlation of normalized reading time to adult narration
7 Correlation of normalized production to adult narration
8 Correlation of normalized latency to adult narration
9 Mean raw reading time
10 Mean normalized reading time
11 Mean raw production
12 Mean normalized production
13 Mean raw latency
14 Mean normalized latency
15 Pause frequency
16 Pitch variation

Table III lists three categories of sentence-level features used in template models.
Correlating against an adult contour is just one way to score a child’s oral reading of
a sentence. Many prosodic features are also informative to average over the utterance.
Finally, some features are defined at the sentence level but not for individual words.

To assess a child’s oral reading prosody overall, we average each sentence-level
feature over all the sentences read by that child. The read sentences in our corpus
averaged 6.7 words long but varied in length, so they should not count equally. In
averaging sentence-level features over multiple sentences, we therefore weight the
average by the number of words on which each feature is based.

Prosodic features can be undefined for some words. For instance, interword latency
is undefined for the first word of a sentence, because the Reading Tutor displays one
sentence at a time. Prosodic features are undefined for words the Reading Tutor gave
help on or did not accept as read correctly, such as the words on, so, and we in Figure 2(c).

We adjust for such missing values as follows. If a prosodic feature is undefined for one
or more words in an adult or (more typically) child contour, we exclude them, compute
the sentence-level feature by correlating or averaging over the rest of the words, and
penalize the resulting score by the proportion of undefined values.

It is not enough just to weight each sentence by the number of words with defined
values, because undefined values in a child’s contour indicate mismatches with the
adult contour. Thus a child contour with only 5 defined word-level values for a 10-word
sentence gets only half of the sentence-level feature value that a complete contour for
a 5-word sentence with the same 5 defined word-level values would get.

Besides averaging each feature per student, we want to characterize how it evolved
over the course of the semester in which the student used the Reading Tutor, because we
care not only about children’s reading proficiency, but about their rate of progress over
time. We plot the feature values observed for each student against the calendar times
when they were observed. We use their linear regression coefficient to estimate the
feature’s rate of change for that student, and their correlation to measure the strength
of their relationship for that student. We multiply the linear regression coefficient by
the correlation to obtain the weighted rate-of-change features listed in Table IV.

Given a set of features, we predict a dependent variable by using stepwise linear
regression to fit statistical models, and selecting the model with maximum adjusted R2.

4. EVALUATION OF TEMPLATE MODELS

We evaluated our approach directly against a human-scored fluency rubric, and indi-
rectly by its ability to predict test scores and gains.
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Table IV. Weighted Rate-of-Change Features

1 Growth in correlation of total
2 Growth in correlation of pitch
3 Growth in correlation of intensity
4 Growth in correlation of raw reading time
5 Growth in correlation of raw production
6 Growth in correlation of raw latency
7 Growth in correlation of normalized reading time
8 Growth in correlation of normalized production
9 Growth in correlation of normalized latency
10 Growth in mean raw reading time
11 Growth in mean raw production
12 Growth in mean raw latency
13 Growth in mean normalized reading time
14 Growth in mean normalized production
15 Growth in mean normalized latency
16 Growth in pause frequency
17 Growth in help rate
18 Growth in percentage words correct

Table V. Interrater Agreement on Fluency Rubric at the Student Level (N = 10 students)

Inter-rater reliability Mean absolute
Rubric dimension (Intraclass correlation) difference Under 0.5 Within 1
Expression and Volume 0.798 0.290 70% 100%
Phrasing 0.681 0.415 60% 100%
Smoothness 0.283 0.695 30% 80%
Pace 0.721 0.400 50% 100%
Overall 0.685 0.408 60% 100%

4.1. Estimating Rubric Scores

To analyze the feasibility of automating a conventional multidimensional fluency
rubric, we took a sample of 10 students in our dataset, stratified by oral reading rate to
ensure a diverse sample. We took the first 10 sentences each from the first and last sto-
ries each student read, so as to include variation caused by change in fluency over time.
Two independent annotators hand-rated students’ expression, phrasing, smoothness,
and pace for each sentence on a 4-point scale specified by the fluency rubric shown in
Table I [Zutell and Rasinski 1991].

We averaged the two judges’ ratings over the 20 sentences for each student on
each dimension and overall (averaged across the 4 dimensions). (One judge marked
3 sentences “unscorable” because they were off-task, so we changed their ratings to 1
on each dimension for purposes of analysis.) To quantify the inter-rater reliability of
these two continuous-valued average ratings for each dimension of the rubric, Table V
uses two types of measures. The intraclass correlation coefficient [Shrout and Fleiss
1979] measures inter-rater reliability on a scale from 0 (worst) to 1 (perfect). Absolute
difference on a 4-point scale is less sophisticated statistically but more understandable
intuitively, both as an average value and in terms of how often it falls under some
threshold.

Intraclass correlation would be 1 for perfect agreement and was approximately 0.7 or
better at the student level for every dimension except smoothness, whose scoring was
impeded by two factors. First, the Reading Tutor presented text one sentence at a time,
which precluded observation of normal pauses before sentences. Second, the annotators
used a tool [Mostow et al. 2010] that played back oral reading one utterance at a time
rather than an entire sentence, making some aspects harder to score. An utterance is
a segment of speech delimited by a silence, so a sentence reading that contains pauses
can consist of multiple utterances.
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Table VI. Interrater Agreement on Fluency Rubric at the Sentence Level (N = 200 sentences)

Inter-rater reliability Mean absolute
Rubric dimension (Intraclass correlation) difference Under 0.5 Within 1
Expression and Volume 0.593 0.570 50% 94%
Phrasing 0.535 0.685 43% 89%
Smoothness 0.398 0.845 34% 84%
Pace 0.578 0.620 46% 93%
Overall 0.638 0.570 41% 87%

Table VII. Experiments to Estimate Rubric Scores

Model Fluency rubric
Input Prosodic features of 200 sentences read by 10 students
Train Stepwise linear regression
Aggregate Averages over 20 sentences for each student
Predict Sentence level rubric scores on four dimensions
Evaluate Leave-1-out cross-validated correlation

To compare to published results, we also analyzed interrater differences as reported
by Rasinski et al. [2009] for a variant scale that collapsed Phrasing and Expression:
“Exact matches or agreement between coders was achieved in 81% of the samples, and
adjacent (one point difference) agreement was found in the remaining 19%.” In contrast
to their discrete 4-point student-level scores, our student-level scores are averages of
sentence-level scores, which seldom match exactly. Therefore, the last two columns of
Table 5 report the equivalent reliabilities; the percentages of students for whom these
averages differed by less than 0.5 or up to 1. We had lower percentages of agreement
within 0.5 points than the 81% rate of exact matches reported by Rasinski et al., but
like them we achieved 100% agreement within 1 point on all scales, except smoothness,
where the two judges nevertheless differed by less than 1.5 points on all 10 students.

However, even the reliability reported by the rubric author is disappointing. Agree-
ment within one point on a 4-point scale is not a very stringent criterion, considering
that two randomly chosen values will achieve it 75% of the time. Moreover, this agree-
ment is at the student level, based on reading an entire passage.

It is therefore unsurprising that interrater reliability was considerably lower for
scoring individual sentences on a discrete 4-point scale, as Table VI shows in compar-
ison to Table V. Average inter-rater differences were larger for single sentences than
averaged over the 20 sentences for each student. Perhaps reading professionals would
agree better, or the rubric is simply too subjective. However, the simplest explanation
is that a single sentence is insufficient to rate reliably on this rubric.

To compute cross-validated correlations, we predicted the average of the two annota-
tors’ ratings from static (i.e., excluding rate-of-change) features of each student’s oral
reading, using SPSS stepwise linear regression on the rest of the students.

Table VII summarizes this experiment. As Table VIII shows, predicted values cor-
related significantly (p < 0.01) [Soper 2010] with these ratings for expression and
smoothness, but not for phrasing and pace. This performance is even less impressive
because the sample of 10 students was stratified, and the resulting heterogeneity tends
to magnify correlations. In short, direct comparison fared poorly for want of a reliable
human gold standard; we needed a better way to evaluate our approach, so we resorted
to an indirect comparison.

4.2. Predicting Test Scores

Ideally we would evaluate methods for automated assessment of oral reading prosody
directly against a gold standard measure assessing the prosody of each read sentence.
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Table VIII. Estimating Student-Level Rubric Scores Using
Automated Features (N = 10 students)

Cross-validated
Rubric dimension correlation P value
Expression and Volume 0.902 0.000
Phrasing 0.281 0.431
Smoothness 0.768 0.009
Pace 0.448 0.194

The obvious candidate for such a measure is a human-scored rubric to evaluate oral
reading fluency, as described in Section 4.1. However, these labor-intensive ratings
would cost too much to score large amounts of data. Moreover, their interrater reliability
on a sample of 200 read sentences was disappointing, especially at the level of individual
sentences.

In the absence of a reliable gold standard, we evaluated our automated methods
indirectly by how well they predicted students’ scores and gains on standard measures
of oral reading fluency and comprehension outside the Reading Tutor. We administered
highly reliable, psychometrically validated paper tests individually at the beginning
(pretest) and end (posttest) of the semester. We measured gains as posttest (end-of-
semester) minus pretest (before using the Reading Tutor).

The fluency test measured oral reading rate as the number of words read correctly
in one minute on a passage at the student’s grade level (2, 3, or 4) [Deno 1985]. To
measure oral reading rate, we used grade-appropriate fluency passages provided by
reading expert and former LISTENer Dr. Rollanda O’Connor. In prior studies with
these test passages the within-grade parallel form reliability was 0.92, consistent with
other reliability estimates for oral reading rate [Compton and Appleton 2004].

Long words take longer to read: mean word reading time for k-letter words correlates
very strongly with k (R2 = .983) [Mostow and Beck 2005]. Harder text has longer words,
so our test passages for grades 2, 3, and 4 differed in average word length (3.8, 4.1, and
4.4, respectively). To control for this difference, we normalized fluency test scores as
letters per second instead of words per minute.

The oral reading rate measured by such fluency tests is not the same construct as the
oral reading prosody assessed directly (though unreliably) by human raters. However,
previous work [Benjamin and Schwanenflugel 2010] had already related children’s
oral reading prosody on two text passages to their comprehension scores. Moreover,
ideal assessment of oral reading prosody would unobtrusively measure comprehension
of the text. Thus reading comprehension scores are a compelling criterion to validate
against. An even more compelling criterion would be comprehension of the specific sen-
tences read aloud [Zhang et al. 2007]. However, interrupting after each sentence to test
comprehension would slow down reading, disrupt its flow, and affect comprehension.

To measure reading comprehension, we used the Passage Comprehension component
of the commercially available Woodcock Reading Mastery Test [Woodcock 1998]. The
Passage Comprehension subtest consists of short passages with multiple choice cloze
(fill-in-the-blank) questions, and has within-grade reliability of 0.9 in early grades
[Berninger et al. 2006].

To evaluate our prosody measures, we needed models to predict test scores from them.
Beck et al. [2004] introduced a model using features based on inter-word latency. This
latency-based model predicted posttest fluency well, with cross-validated mean within-
grade correlation of 0.83, compared to the upper bound of 1. (The overall correlation
for a sample that spans multiple grades reflects the heterogeneity of the sample as
much as the accuracy of the model. Computing the correlation within each grade and
averaging these within-grade correlations avoids this spurious inflation.) Beck et al.
did not predict comprehension or gains, but we did so by replicating their model.
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Table IX. Experiment to Predict Test Scores and Gains

Model Template model
Input 77,600 sentence readings by 55 students aged 7–10 with test scores;

24,816 sentence narrations by 20 adults
Train Stepwise linear regression
Aggregate Average features across sentences, weighted by number of words read
Predict Posttest fluency and comprehension scores and gains
Evaluate Leave-one-out cross-validated correlation of actual and predicted values

Table X.
Cross-validated mean within-grade correlations of actual values (N = 55 stu-
dents) to values predicted using regression against different features

Posttest Comp. Fluency
Model features fluency posttest gain Comp. gain
Pretest score 0.809 0.738 −0.741 0.202
Latency 0.859 0.724 0.524 0.453
Correlations+latency 0.872 0.763 0.934 0.504
Correl+latency+pretest 0.965 0.690 0.867 0.643

We then extended this latency-based model into a correlation+latency model by
adding our template-based features of oral reading, including rate-of-change features
as well as static features. To avoid outliers, we considered only the 55 students who
read at least 20 sentences. We trained models on all the data from these 55 students,
using stepwise linear regression in SPSS.

Test scores should increase over time. Correlating predicted against actual posttest
scores and gains gives credit only for predicting differences among students, not merely
for predicting the average increase over pretest scores.

In general, pretest scores are strong predictors of posttest scores, so we compared
correlation+latency models against pretest scores as predictors of students’ posttest
scores and pre- to posttest gains. We also trained hybrid correlation+latency+pretest
models to predict posttest scores and gains by augmenting pretest scores with the
automated features, so as to measure the additional predictive power contributed by
the features.

Table IX summarizes this experiment. We evaluated models by their cross-validated
mean within-grade correlations between predicted and actual values. Like Beck
et al. [2004], we correlated predicted with actual values for each grade, and com-
puted the arithmetic mean of these within-grade correlations. As Table X shows,
the correlation+latency models outperformed pretest scores and latency-based models
across the board in predicting fluency and comprehension scores and gains, in two cases
even better than after adding pretest scores. The first row of the table shows how well
each pretest predicted posttest and gains in the same skill. We also found that fluency
pretest predicted posttest scores and gains in comprehension with respective mean
within-grade correlations of 0.617 (unsurprisingly, lower than using pretest to pre-
dict posttest scores for the same skill) and 0.297 (actually better than comprehension
pretest predicted comprehension gains). We computed these correlations within three
grades (2, 3 and 4) with N = 33, 14, and 8 students, respectively. Correlations in grades
3 and 4 were generally higher than in grade 2 and the means reported in Table X.

In our correlation+latency model, the features that explained the most variance in
posttest fluency were, in order, percentage of words accepted as read without hesi-
tation, normalized production time, word reading time, normalized production change
rate, and latency correlation with adult narrations. Latency strongly influences 3 of our
5 top features (including word reading time, which is the sum of latency and produc-
tion). The top predictors in our correlation+latency model of posttest comprehension
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Table XI. Top Predictors in Correlation+Latency Model

Posttest fluency Posttest comprehension
Feature Adjusted R2 Feature Adjusted R2

Percentage of words accepted as
read fluently

0.836 Percentage of words with defined
latency

0.619

Normalized production time 0.845 Correlation of latency 0.652
Speedup in normalized production 0.859 Correlation of pitch 0.674
Correlation of latency 0.860 Percentage of Dolch words 0.673

Table XII. Experiments in Rubric-Based Prediction of Test Scores

Model Fluency rubric
Input Sentence level rubric scores on 4 dimensions of 200 sentences read by 10 students
Train WEKA linear regression with M5 feature selection
Aggregate Average over 20 sentences for each student
Predict Posttest fluency and comprehension scores
Evaluate Cross-validated correlation of actual and predicted values

scores were the percentage of words with defined latency (i.e., accepted by the speech
recognizer as read correctly without omitting the previous word [Beck et al. 2004]),
latency correlation, pitch correlation, percentage of Dolch (high-frequency) words with
minimal latency, and change rate of normalized production correlation.

Table XI shows the adjusted R2 of successive models that added each of these features
in stepwise linear regression.

In comparison, Miller and Schwanenflugel [2008] found pitch correlation to be the
best prosodic predictor of grade 3 fluency, and reduction in pausal intrusions from grade
1 to grade 2 to be the best at predicting grade 3 comprehension. Latency and pitch
correlation were likewise among our most predictive features. However, latency pre-
dicted fluency, and pitch correlation predicted comprehension, rather than vice versa.
Our results make sense insofar as disfluency—slow, laborious reading with many false
starts and restarts—is closely related to latency. Also, one expects intonation to reflect
understanding as it requires sensitivity to syntax, contrastive stress, and text style.

4.3. Comparing to Rubric-Based Prediction

How did our automatically computed template-based features compare to the hand-
scored fluency rubric in predicting the same students’ test scores? To find out, we
trained models on the hand-scored rubric ratings for the 10 students using Weka’s
linear regression with the M5 feature selection method. We evaluated the trained
models using leave-1-out cross-validation to avoid overfitting. Table XII summarizes
rubric-based prediction of test scores.

We fit template-based, pretest-based, and pretest+template models to the 45 re-
maining students’ posttest scores. To evaluate these models, we used the data from
the 10 students with rubric scores as a held-out test set. This procedure enabled us to
compare the rubric-based and other models on the data from the same 10 students.

Table XIII compares correlations for the four types of model. All models predicted
posttest fluency with correlation 0.8 or better, thanks to the heterogeneity of a small
sample of students stratified by fluency. In predicting posttest comprehension, the
template-based model performed better than the rubric-based model. But was it be-
cause its features were actually more predictive, or just that it used more data?

4.4. Varying the Amount of Training Data

To distinguish whether the inferior performance of the rubric-based models was
due to worse features or to less data, we compared them against template-based
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Table XIII. Correlation of Predicted to Actual Posttest Scores for 10
Rubric-Scored Students

Model Posttest fluency Posttest comprehension
Rubric-based 0.930 0.300
Pretest-based 0.946 0.786
Template-based 0.946 0.454
Pretest + template 0.801 0.310

Table XIV.
Cross-validated correlations of predicted to actual posttest scores using template models trained on
different amounts of data

Training data for template models Posttest fluency Posttest comprehension
Trained on only 200 sentences from 10 students 0.902 0.342
Trained on all sentences from 10 students 0.981 0.713
Trained on all 45 other students 0.946 0.454

models trained on the same 10 students. One training condition used only the 200
sentences scored by the rubric annotator, but instead of their manual scores it used
their automated features. Another condition trained on all the sentences read by these
10 students (2503 sentences, ranging from 95 to 464 sentences per student), not just
the hand-scored ones.

Table XIV compares the leave-out-one cross-validated accuracy of both these models
to the models evaluated in Table XIII. Trained on the same 200 sentences, the template-
based model explained 3% less of the variance in fluency than the rubric-based model,
but 4% more of the variance in comprehension.

As expected, using more data from the same 10 students resulted in better template-
based models for fluency (explaining 8% more variance) and especially for comprehen-
sion (doubling the amount of variance explained).

The template-based models trained on the other 45 students did better than the
rubric- and template-based models trained on only 200 sentences from the 10 stu-
dents, but not as well as models trained on all of their data. Given enough data about
the 10 students, the trained models evidently exploited some characteristics of this
group, even though they were cross-validated across students to keep them from using
information about the held-out student.

In short, the template-based models outpredicted the rubric-based models primarily
thanks to training on more data about the 10 students than to its features, which were
actually a bit worse than the rubric-based features at predicting fluency from the same
data, and only slightly better than them at predicting comprehension. The rest of this
paper does not depend on human-scored ratings of oral reading prosody.

5. GENERALIZED MODELS

Section 4.2 showed (in Table X) that correlating children’s oral reading prosody against
adult narrations of the same text helped (along with other sentence features in Ta-
ble III) to predict their fluency and comprehension posttest scores about as well as or
better than pretest scores did, and predicted their gains considerably better. In this
section we tackle the same problem of assessing children’s oral reading prosody, but
eliminate the need for an adult narration of each sentence scored. Instead, we adapt
prior work [Jurafsky and Martin 2008] that trains models of duration, F0, and inten-
sity in order to map text to prosody. We train similar models, but instead of using them
to prescribe a specific prosodic contour, we use them to assess children’s prosody. We
train our model on multiple adult voices so it is not specific to the idiosyncrasies of one
speaker. This model also lets us score readings of new text unnarrated by adults.
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Prosody can be quantified by duration, pitch, and intensity. As Section 4.2 reported,
we found duration-based features strongest in predicting paper tests of fluency and
comprehension. Our work on detecting prosody improvement [Duong and Mostow 2009]
also found duration-based features strongest. This section therefore focuses on dura-
tion: how we train a model to synthesize durations; the features it uses; and how we
transform it into a model to assess oral reading prosody.

5.1. Duration Model for Synthesis

Several duration models, either rule-based or statistical, have been shown to work well
in speech synthesis. Most well-known among the rule-based methods is the method
of Klatt [1979], which uses rules to model the average duration of a phone given its
surrounding context. Examples of good machine learning methods for prosody models
are decision trees [Breiman et al. 1984; Quinlan 1986] and the sum-of-products model
[van Santen 1994, 1997, 1998]. Using adult narrations of hundreds of stories in the
Reading Tutor as training data, we decided to train a decision tree model of phone
duration, using tools in the Festival Speech Synthesis System [Hunt and Black 1996].
Given recorded, transcribed utterances, the trainer computes a set of features for each
phone and builds a decision tree using these features. Rather than simply using all
features, the trainer uses a greedy stepwise approach to select which set of features to
use. Each step tests the features to find the best feature to add next. Given a new text
to synthesize, the model generates each phone’s duration as follows. First it computes
the selected features of the phone and its surrounding context, up to the utterance
level, to place the phone in the appropriate leaf node. It then uses the mean duration
of all training data instances that have fallen into that leaf node as the synthesized
duration for the phone. We now describe the features used in the model.

5.2. Features in Duration Model

Our duration model uses features of the phone itself, as well as contextual features
about the syllable structure and the word containing the phone. Phone level features
include the phone name, its position in the syllable, whether it occurs before or after
the syllable’s nucleus, and whether it’s a consonant or a vowel. For a vowel, we compute
length (short, long, diphthong or schwa), height (high, mid, or low), frontness (front,
mid, or back), and roundedness (rounded or unrounded). For a consonant, we include
type (stop, fricative, affricative, nasal, lateral, or approximant), place of articulation
(labial, alveolar, palatal, labio-dental, dental, velar, or glottal) and voicing (voiced or
unvoiced). For some of these features, we also look two phones to the left and right.
Syllable level features include number of phones in onset and coda, position in word,
distance to end of the phrase, number of syllables from last and next phrase breaks,
number of stressed syllables from last and next phrase breaks, and the lexical stress
of the syllable. At the word level, we use the number of syllables in the word, and its
context-sensitive part of speech.

5.3. Using a Synthesis Model for Assessment

So far we have simply described common practice in prosodic synthesis. The novelty
of our method is in transforming a model for synthesizing speech into a model for
assessing children’s oral reading. To this end, we train the model similarly to what is
done for synthesis, but use it differently. Instead of using the mean duration at each
leaf node of the decision tree to prescribe the duration for a phone being synthesized,
we use the mean (and possibly the standard deviation) of all the instances at the leaf
node to score the observed duration of the phone being assessed.

Figure 3 depicts a fragment of a simple (made-up) tree covering the two instances of
the phone /IH/ in speaking the sentence This is an example. The /IH/ in This is in the
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Fig. 3. Decision tree fragment with two /IH/ nodes.

middle of the syllable, so when it reaches the “Syllable initial?” test, it follows the left
branch to the bottom left leaf. Conversely, the /IH/ in is occurs at the beginning of the
syllable, so it follows the right branch to the bottom right leaf. Each phone contributes
to the training instances used to estimate the mean and standard deviation at its leaf
node. According to these (fictitious) estimates, adult narrators tend to pronounce /IH/
longer in is than in This, but with greater variability. How can we use such statistics
to score children’s oral reading?

Given a child’s utterance and a trained decision tree, we evaluated different formulas
for how to compute phone-level scores and aggregate them into an overall score for the
utterance. In the following equations, u is the utterance to score, containing n phones;
the pi ’s are phones in that utterance; di is the actual duration produced by the child
for phone pi; and μi and σi are the mean and standard deviation of the training data
for that phone.

(1) Average log likelihood:

avg ll = 1
n

∑
pi∈u

1√
2πσ 2

exp
(

− (di − μi)2

2σ 2
i

)
.

(2) Average z-score:

avg zscore = 1
n

∑
pi∈u

|di − μi|
σi

.

(3) Pearson correlation coefficient:

correlation = 1
n − 1

∑
pi∈u

(
di − d

sd

) (
μi − μ

sμ

)
,

where sd and sμ are the standard deviation of the actual duration and mean duration,
respectively, of the phones in this utterance.
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(4) Root mean squared error (RMSE):

RMSE =
√√√√1

n

∑
pi∈u

(di − μi)2.

(5) Mean absolute error (MAE):

MAE = 1
n

∑
pi∈u

|di − μi|.

(6) Correlation of word durations:

word dur correl = 1
# words − 1

∑
wordj

(
Dj − D

sD

)(
M j − M

sM

)
,

where Dj and Mj represent the actual and prescribed durations of word j , respectively.
(7) Weighted average of word-level correlations:

avg word correl = 1
n

∑
wordj

# phonesj × word correlj .

Measures 1–5 combine the scores of individual phones (including silences) directly
into an utterance level score. Measure 1 (average log likelihood) indicates how close
the children’s durations are to the model, and assumes that all the phones in the
utterance are independent. It takes into account both the means and the standard
deviations estimated from the training data. Measure 2 (z-score) also uses the standard
deviations as well as the means, specifically to normalize the distance of an instance
from the mean. Measures 3–5 consider only the mean durations, measuring how far
the children’s durations are from these means. Measures 4 (root mean squared error)
and 5 (mean absolute error) consider only the difference between the model’s means
and the children’s actual durations, whereas measure 3 (duration correlation) looks in
addition at whether the two sequences follow similar contours.

Measures 6 and 7 first compute scores at the word level, and then combine these
word level scores into utterance level scores. For Measure 6, we first compute the
total durations of the phones in each word (including the preceding silence): both the
actual durations of the phones spoken by the child, and the durations prescribed by
the synthesis model (namely, the mean durations of the training examples for the
corresponding leaf nodes). We then compute the correlation between the actual and
prescribed durations of the words in the utterance. For Measure 7, we first correlate the
actual and prescribed durations of the phones in each word, obtaining one correlation
for each word. We then take the weighted average of these correlations, using the
number of phones in each word as the weight.

When we compute these scores, we must handle cases where a child misread, skipped,
or repeated words. Just as for template models, we consider only the child’s first at-
tempt to read a word, and exclude words that the child skipped, or that the tutor
assisted before the child could attempt them. We count the number of such words in
each utterance, and use the percentage of included words to weight the score of each
utterance when we combine the scores of all the utterances. This weighting scheme
gives higher weights to sentences with fuller observations of the child’s performance.

Our models leave room for further improvement. We plan to train similar models for
latency, pitch, and intensity, in order to derive a more comprehensive set of scores for
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Table XV. Generalized Model Experiments

Model Generalized model
Data 24,816 sentence narrations by 20 adults; 77,600 sentence readings by 55

students aged 7-10 with test scores
Train Regression trees to map text features to adult phoneme durations; linear

regression (Enter and Stepwise) to predict test scores from child’s prosody
Aggregate 7 formulas to combine phone level features into sentence level prosodic

features
Predict Posttest comprehension and fluency scores
Evaluate Adjusted R2 of predicted vs. actual scores

children’s oral reading prosody. The Festival toolkit provides straightforward modules
to train synthesis models for these features, and transforming them into models for
scoring should be very similar to transforming the duration model. Another limitation
consists of computing decision tree estimates (mean and standard deviation) solely
from the statistics at the leaf level. Although taking standard deviation into account
uses more information than synthesizing based solely on the mean, estimates at leaf
nodes may be based on sparse data. To mitigate this problem, we had a rule to stop
splitting the tree whenever there are fewer than 20 training instances. A more prin-
cipled approach would use deleted interpolation [Magerman 1995], which smoothes
sparse estimates of leaf-level probabilities, conditioned on many features of the phone,
by combining them with better estimated but less specific probabilities at higher levels
in the tree. However, before extending the approach to evaluate latency, pitch, and in-
tensity or use more sophisticated estimates, it makes sense to evaluate the basic idea,
as we now describe.

6. EVALUATION OF GENERALIZED MODELS

What is a better way to score children’s oral reading prosody: comparison to fluent adult
narrations of the same sentences, or a generalized model trained on those narrations?
To address this question, we evaluated both methods.

We combined the utterance-level scores for each student as described in Section 5.3, to
arrive at 7 different scores for the student. We then trained a linear regression model
to predict students’ test performance, using these scores as independent variables.
Table XV summarizes the overall evaluation procedure.

We compared our generalized models against template models. To make the com-
parison fair, the template models used only features related to duration, not pitch or
intensity. These features included child-adult correlations for word production, latency,
and reading time, both raw and after normalizing for word length. Here production or
word duration is the time to speak the word; latency is the time between successive text
words, including “false starts, sounding out, repetitions, and other insertions, whether
spoken or silent” [Beck et al. 2004; Mostow and Aist 1997]; and word reading time is
the sum of production and latency.

In our experiments, we used SPSS’s linear regression function, with either the Step-
wise or Enter method of selecting features. The Enter method simply includes all the
features in the model, whereas the bidirectional Stepwise method inserts or removes
one feature at each step based on an F-test. This greedy method sometimes does worse,
so we tried both methods and reported the adjusted R2 of the two.

Table XVI compares the adjusted R2 of two types of models. The template models
use features computed by correlating the child’s and adult narrator’s prosodic contour
for each sentence, as described in Section 3. The generalized models use scores output
by the synthesis model trained on the same set of adult narrations, as described in
Section 5.
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Table XVI. Adjusted R2 of Competing Models

Dependent variable Template Generalized
Enter Stepwise Enter Stepwise

Posttest fluency 0.555 0.565 0.635 0.637
Posttest comprehension 0.355 0.362 0.580 0.595

Table XVII. Adjusted R2 of Pretest with vs. without Generalized Model Scores

Dependent variable Pretest Pretest + generalized
Enter Stepwise Enter Stepwise

Posttest fluency 0.873 0.852 0.852 0.866
Posttest comprehension 0.783 0.792 0.813 0.813

As Table XVI shows, the generalized model accounts for 7.2% more variance in
fluency and 23.3% in comprehension than the template model, based on adjusted R2

for Enter or Stepwise, whichever is higher. The fact that the generalized models out-
predicted the template models means they gained more by generalizing across different
sentences than they lost by ignoring the sentence details they did not capture.

Speakers did not overlap between the adult narrations used to train the generalized
models and the children’s oral reading used to test them, but text overlapped: the
children read the same sentences narrated by the adults. However, the amount of
training data (24,816 sentences, times roughly 50 phonemes per sentence) is so large
relative to the size of the phoneme-level decision tree trained on them (11,123 decision
nodes) as to assuage fears of overfitting those particular sentences. Consequently the
generalized models should perform well on unseen sentences drawn from a similar
distribution.

Pretest scores are typically strong predictors of post-test scores, so we also tested
whether generalized models with pretest score as an additional feature did better than
pretest score alone. Table XVII shows that pretest scores achieved high adjusted R2 .
Adding the generalized model’s features actually reduced adjusted R2 for fluency by
0.7%, from 0.873 to 0.866 (conceivably an artifact of overfitting by Enter), but accounted
for 2.1% additional variance in comprehension.

In models constructed by stepwise regression, we noticed that the average log like-
lihood score for the utterance (Measure 1) was always the first feature to be selected,
sometimes the only one. This finding demonstrates the value of incorporating the stan-
dard deviation of phone durations into the scores.

7. CONTRIBUTIONS AND FUTURE WORK

In this article we presented two methods to assess oral reading prosody automatically,
and evaluated them on a large corpus of real oral reading by real children recorded by
Project LISTEN’s Reading Tutor in real schools.

The template model method scores a child’s oral reading prosody by correlating it
against a fluent adult narration of the same sentence. More precisely, it uses such
correlations as input variables in a linear regression model to predict students’ test
scores and gains.

The generalized model method trains a prosodic synthesis model on the same fluent
adult narrations and transforms it to score children’s oral reading prosody. We showed
how to use the trained synthesis model to score each phone, and investigated seven
different formulas to combine phone scores to score words and utterances. Two of these
formulas exploit standard deviations of the feature values underlying each leaf of the
trained decision tree. The method trains generalized models of oral reading prosody
that could be used to score sentences not in the training corpus.
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We evaluated the template method against a fluency rubric on a sample of 10 stu-
dents stratified by reading proficiency. Two human judges scored 20 sentence readings
by each student. However, their interrater reliability was low, especially for individ-
ual sentences, making them problematic to predict automatically; we did better in
estimating scores at the student level.

We evaluated both of our methods indirectly by their ability to predict students’
scores on fluency and comprehension tests. The generalized models beat the template
models on both tasks. Moreover, the generalized model method is qualitatively superior
in that it eliminates the requirement for an adult to narrate each sentence in order
for the computer to score it. Although it still requires a narrated training corpus, a
generalized model applies to any sentence, whereas a template model is restricted
to the sentences in the corpus. The opposite result would have suggested that the
phone features employed by the generalized model failed to capture enough information
about the sentence text to score its prosody as accurately as comparing it to the adult
narration. Evidently, the smoothness added by generalizing over multiple narrators
and sentences more than compensated for whatever information was lost by ignoring
sentence details unrepresented by the phone and context features in the generalized
model.

Besides extending the generalized model method to score latency, pitch, and inten-
sity, we are working to mine the trained models for useful knowledge [Mostow and
Sitaram 2011]. First, characterizing which sentences are scored more accurately by a
template model than by a generalized model may reveal important text features that
govern oral reading prosody but are missing from the generalized model. Second, char-
acterizing which decision tree nodes are especially strong predictors of comprehension
test scores or gains may reveal specific prosodic knowledge that facilitates reading
comprehension. Third, characterizing which sentences are especially strong predictors
of test scores or gains may reveal features of text that make it especially diagnostic for
scoring oral reading prosody or predicting comprehension. Evidence for the potential
value of this direction comes from recent work [Benjamin and Schwanenflugel 2010] re-
lating children’s oral reading of two text passages to their comprehension scores. Their
performance on the harder text passage turned out to be highly predictive, in contrast
to the easier passage. This finding suggests that we might improve the predictive accu-
racy of our models simply by ignoring children’s prosody on easy text. More generally, it
suggests that discovering features of words and sentences especially predictive of test
scores and gains may shed new light on how to assess, predict, and improve children’s
oral reading fluency and comprehension.
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